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∑∞

n=m anzn, z ∈ ∆
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f ∗ g convolution or Hadamard product of functions f and g
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= Imaginary part of a complex number

vii



ABSTRACT

The present work is devoted to the study of certain subclasses of

analytic functions and meromorphic functions defined in the unit disk

∆ = {z : |z| < 1}.

LetA(p, m) consists of analytic p-valent functions of the form f(z) =

zp+
∑∞

n=m anzn in ∆. A subclass ofA(p,m) with negative coefficients is

introduced. We obtain coefficient inequalities for this subclass. Distor-

tion and growth estimates for functions in this class as well as inclusion

and closure properties are also determined. A representation theorem

is derived and it is proved that the subclass is closed under the Bernardi

integral operator.

Let Σp be the class of meromorphic functions of the form f(z) =

1
zp +

∑∞
k=1−p akz

k defined in the unit disk ∆. Functions in Σp are

analytic in the punctured unit disk ∆∗ = ∆ − {0}. Inequalities are

obtained for meromorphic functions in Σp which are associated with

the Liu-Srivastava linear operator H l,m
p and the multiplier transform

Ip(n, λ). In addition, we obtain sufficient conditions for f ∈ Σp to

satisfy a growth inequality.
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FUNGSI ANALISIS BERPEKALI NEGATIF
DAN FUNGSI MEROMORFIK YANG

DIJANAKAN MELALUI
PENJELMAAN LIU-SRIVASTAVA

ABSTRAK

Kajian ditumpukan kepada beberapa subkelas fungsi analisis dan

fungsi meromorfik yang tertakrif pada cakera unit ∆ = {z : |z| < 1}.

Andaikan A(p,m) mengandungi fungsi-fungsi analisis p-valen yang

berbentuk f(z) = zp +
∑∞

n=m anzn pada ∆. Suatu subkelas bagi

A(p,m) dengan pekali negatif diperkenalkan. Kita mendapatkan batas

atas pekali-pekali bagi subkelas tersebut. Anggaran perubahan dan

pertumbuhan bagi fungsi dalam kelas ini diperolehi, disamping sifat

rangkuman dan tertutup. Teorem perwakilan bagi fungsi dalam ke-

las ini dibuktikan dan penjelmaan kamiran Bernardi ke atas kelas ini

dikaji.

Andaikan Σp ialah kelas fungsi meromorfik berbentuk f(z) = 1
zp +

∑∞
k=1−p akz

k yang tertakrif pada cakera unit . Fungsi dalam Σp adalah

analisis di dalam cakera unit berlubang ∆∗ = ∆− {0}. Ketaksamaan

yang melibatkan fungsi-fungsi dalam Σp yang dijanakan melalui penjel-

maan linear Liu-Srivastava H l,m
p dan penjelmaan kepelbagaian Ip(n, λ)

diperoleh. Kita juga turut memperolehi syarat cukup bagi f ∈ Σp

untuk memenuhi suatu ketaksamaan pertumbuhan.

ix



CHAPTER 1

INTRODUCTION

1.1. Univalent functions

Let ∆ = {z ∈ C : |z| < 1} be the open unit disk in the complex

plane. Let A consists of all analytic functions f : ∆ → C and nor-

malized by the conditions f(0) = 0 = f ′(0) − 1. A function f ∈ A is

univalent in ∆ if it is one-to-one in ∆. Let S denote the class consisting

of all analytic univalent functions f(z) in A. Thus functions in S have

the form

f(z) = z + a2z
2 + a3z

3 + . . . , z ∈ ∆.

Two important functions in S are given by the following examples.

Example 1. The Koebe function is defined by

k(z) =
z

(1− z)2
.

If k(z1) = k(z2), then z1−2z1z2+z1z
2
2 = z2−2z1z2+z2

1z2 which implies

(z1 − z2)(1− z1z2) = 0.

Since z1, z2 ∈ ∆ implies |z1z2| < 1, we have 1 − z1z2 6= 0. Hence

z1 = z2. This shows that k(z) is univalent in ∆.
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Clearly k(0) = 0 = k′(0)− 1. Thus k(z) = z
(1−z)2

∈ S. The function

k maps ∆ univalently onto C \ (−∞,−1/4]. The Koebe function is an

extremal function for many problems in the class S.

Example 2. The function τ(z) = z
1−z

belongs to S. This can be

shown in a similar manner as in the previous example.

1.2. The Bierberbach conjecture

In 1916, Bieberbach proved that if f(z) = z + a2z
2 + . . . ∈ S, then

|a2| ≤ 2 and that equality holds if and only if f(z) = k(z) = z
(1−z)2

or

one of its rotations. He also conjectured that

|an| ≤ n

for n ≥ 2 and that equality holds if and only if f(z) is either the function

k(z) = z
(1−z)2

or one of its rotations. It was only in 1985 that de Branges

[4] provided a complete solution to the Bierberbach conjecture. Prior

to this achievement, the Bierberbach conjecture was shown to be true

for several subclasses of univalent functions. These classes include the

class of starlike functions, the class of convex functions and the class of

close-to convex functions. We shall define these classes later. We now

give a proof of Bieberbach’s result.

Theorem 1.2.1 (Bieberbach). Let f(z) = z+a2z
2+. . . ∈ S . Then

|a2| ≤ 2 and equality holds if and only if f(z) = z
(1−z)2

or its rotations.

To prove this theorem we need the following lemma.

2



Lemma 1.2.2. [12] If w(z) = z+
∑∞

n=0 anz−n is univalent in |z| > 1,

then

∞∑
n=1

n|an|2 ≤ 1.

Proof of Theorem 1.2.1. We first show that the function F (z) =

√
f(z2) = z + a2z3

2
+ . . . is univalent in |z| < 1. If F (z1) = F (z2) then

f(z2
1) = f(z2

2) . However f(z) being univalent yields z2
1 = z2

2 , that

is, z1 = ±z2. Since F (z) is an odd function, z1 = −z2 implies that

F (z1) = −F (z2). Thus the only solution of F (z1) = F (z2) is z1 = z2

and consequently F (z) is univalent. It follows that

(1.2.1) φ(z) = [F (1/z)]−1 = z − a2

2z
+

c3

z3
+

c5

z5
+ . . .

is an odd univalent function in |z| > 1. Hence, by Lemma 1.2.2

1

4
|a2|2 + 3|c3|2 + . . . ≤ 1.

Then

|a2|2 ≤ 4 ⇒ |a2| ≤ 2.

If |a2| = 2 then a2 = 2eiα so that
∣∣−1

2
a2

∣∣2 = 1. Since the coefficients of

the function φ(z) in (1.2.1) satisfies

∣∣∣∣
−1

2
a2

∣∣∣∣
2

+ 0 + 3|c3|2 + 0 + 5|c5|2 + . . . ≤ 1,

|a2| = 2 implies

1 + 3|c3|2 + 0 + 5|c5|2 + . . . ≤ 1.

Consequently, c2n+1 = 0, ∀n ≥ 1.
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The function φ(z) in (1.2.1) takes the form of

φ(z) =
1

F (1/z)
= z − eiα

z
, i.e, F (z) =

z

1− eiαz2
.

Thus

f(z2) = [F (z)]2 =
z2

(1− eiαz2)2
.

In other words, f(z) = z
(1−eiαz)2

, which is a rotation of the Koebe

function. ¤

By using the bound for |a2|, we now obtain bounds for |f ′(z)| and

|f(z)|. In the proof of these results, we need the following lemmas.

Lemma 1.2.3. If f(z) is in S, then for any ς in ∆,

1

2

∣∣∣∣
f ′′(ς)
f ′(ς)

(1− |ς|2)− 2ς

∣∣∣∣ ≤ 2.

Proof. For each fixed ς in ∆, the function

g(z) =
f( z+ς

1+ςz
)− f(ς)

f ′(ς)(1− |ς|2) = z + b2z
2 + . . .

is in S. By Theorem 1.2.1, we have

|b2| =
∣∣∣∣
f ′′(ς)(1− |ς|2)

2f ′(ς)
− ς

∣∣∣∣ ≤ 2

which yields the desired result. ¤

Lemma 1.2.4. If f(z) is analytic at ς = %eiθ and f ′(ς) 6= 0, then

%
∂

∂%
ln |f ′(ς)| = <ς

f ′′(ς)
f ′(ς)

and

%
∂

∂%
arg(f ′(ς)) = =ς

f ′′(ς)
f ′(ς)

.
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Proof. Since log f ′(ς) = ln |f ′(ς)|+ i arg f ′(ς), we have

%
∂

∂%
log f ′(ς) = %

∂

∂%
(ln |f ′(ς)|+ i arg(f ′(ς)).

Also

%
∂

∂%
log f ′(ς) = %

∂

∂ς
(log f ′(ς))

∂ς

∂%
= %

f ′′(ς)
f ′(ς)

eiθ

= ς
f ′′(ς)
f ′(ς)

.

Therefore

ς
f ′′(ς)
f ′(ς)

= %
∂

∂%
(ln |f ′(ς)|) + i%

∂

∂%
(arg f ′(ς)).

The result is obtained by comparing the real and imaginary part. ¤

1.3. Distortion and growth theorems

Theorem 1.3.1 (Distortion theorem). If f(z) is in S, then for each

z = reiθ in ∆,

1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
.

These inequalities are sharp. Equality occurs for the Koebe function

k(z) =
z

(1− z)2
.

Proof. Multiplying the inequality in Lemma 1.2.3 by 2|ς|
1−|ς|2 yields

∣∣∣∣
ςf ′′(ς)
f ′(ς)

− 2|ς|2
1− |ς|2

∣∣∣∣ ≤
4|ς|

1− |ς|2 .

Writing |ς| by % and using the fact that

|α| ≤ β ⇒ −β ≤ <α ≤ β, −β ≤ =α ≤ β,
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we get

−4%

1− %2
≤ <

(
ςf ′′(ς)
f ′(ς)

− 2%2

1− %2

)
≤ 4%

1− %2

and

−4%

1− %2
≤ =

(
ςf ′′(ς)
f ′(ς)

− 2%2

1− %2

)
≤ 4%

1− %2
.

We transpose the real term 2%2

1−%2 and use Lemma 1.2.4 to get

2%2 − 4%

1− %2
≤ %

∂

∂%
ln |f ′(ς)| ≤ 2%2 + 4%

1− %2

and

4%

1− %2
≤ %

∂

∂%
arg f ′(ς) ≤ 4%

1− %2
.

We divide by % the first of the above two inequalities and integrate

along the straight line path from z = 0 to z = reiθ (% runs from 0 to r

and f ′(0) = 1) to obtain

ln
1− r

(1 + r)3
≤ ln |f ′(z)| ≤ ln

1 + r

(1− r)3
.

We get the desired result by exponentiating. Since for the Koebe func-

tion

k′(z) =
d

dz

(
z

(1− z)2

)
=

1 + z

(1− z)3
,

the inequalities are sharp at z = r and z = −r. ¤

We need the following lemma to prove the growth theorem for uni-

valent function.

Lemma 1.3.2 (10, Theorem 7, p.67). Suppose that f(z) ∈ S satisfies

m′(r) ≤ |f ′(z)| ≤ M ′(r), (0 ≤ r < 1, |z| ≤ r)

6



where m′(r) and M ′(r) are real-valued functions of r in [0, 1). Then

∫ r

0

m′(t)dt ≤ |f(z)| ≤
∫ r

0

M ′(t)dt.

Theorem 1.3.3 (Growth Theorem). If f(z) ∈ S, then for |z| ≤ r,

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
.

Equality occurs for

k(z) =
z

(1− z)2
.

Proof. The result follows by taking

m′(r) =
1− r

(1 + r)3
and M ′(r) =

1 + r

(1− r)3

in Lemma 1.3.2. ¤

Since

lim
r→1+

r

(1 + r)2
=

1

4
,

the image of the unit disk under the mapping w = f(z) contains the

disk of radius 1/4. This disk is called the Koebe domain.

Theorem 1.3.4 (Koebe domain). If f ∈ S, then

f(∆) ⊇ {w : |w| ≤ 1/4}.

The result is sharp for k(z) = z
(1−z)2

.
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1.4. Convex and starlike functions

Definition 1.4.1. A set D in the complex plane is said to be

starlike with respect to an interior point w0 in D if for each w ∈ D, the

line segment joining w and w0 lies entirely in D, i.e., tw0+(1−t)w ∈ D

for 0 ≤ t ≤ 1. If a function f ∈ S maps ∆ onto a domain that is starlike

with respect to w0, then we say that f(z) is starlike with respect to w0.

In the special case that w0 = 0, we simply say that f(z) is a starlike

function.

The class of starlike functions in S will be denoted by S∗. The

Koebe function, k(z) = z
(1−z)2

is an extremal function for many prob-

lems in the class S∗.

Definition 1.4.2. A set D in the complex plane is called convex

if for every pair of points w1 and w2 in D, the line segment joining

w1 and w2 lies also in D. If a function f ∈ S maps ∆ onto a convex

domain, then f(z) is called a convex function.

Note that D is convex if it is starlike with respect to every point

w0 ∈ D. Further, for every pair of points w1 and w2 in D, the point

tw1 + (1− t)w2 ∈ D for 0 ≤ t ≤ 1.

The class of convex functions in S will be denoted by C. The

function τ(z) = z
1−z

is an extremal function for many problems in the

class C.
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1.5. Convexity and starlikeness of a curve

Consider the image of a curve Γz under a function f(z) that is

analytic on Γz. In most cases, Γz will either be a circle, a line segment,

or some other elementary arc. Hence we shall assume that Γz is a

smooth curve with parametrization

z(t) = x(t) + iy(t) (a ≤ t ≤ b)

where x(t) and y(t) are real functions, and

z′(t) = x′(t) + iy′(t) 6= 0

for t in [a, b]. The arc Γz is a directed arc, the direction being that

determined as t increases. Let Γw be the image of Γz under a function

f(z) that is analytic on Γz and assume that w0 is not on Γw. The

arc Γw is said to be starlike with respect to w0 if arg(w − w0) is a

nondecreasing function of t, i.e, if

d

dt
(arg(w − w0)) ≥ 0

t ∈ [a, b]. To convert this inequality to a more useful form, we have

d

dt
arg(w − w0) =

d

dt
= log(w − w0)

= =
[

d

dt
log(w − w0)

]

= =
[

d

dz
log(w − w0)

dz

dt

]

= =
[

f ′(z)

f(z)− w0

dz

dt

]
.

9



Lemma 1.5.1. The image of Γz : z = z(t) under f(z) is starlike

with respect to w0 if and only if

(1.5.1) =
[

f ′(z)

f(z)− w0

z′(t)
]
≥ 0, t ∈ [a, b].

The arc Γw is said to be convex if the argument of the tangent to

Γw is a nondecreasing function of t. The direction of the tangent to

Γz is argument z′(t) and the mapping w = f(z) rotates this tangent

vector through an angle of argument f ′(z). Thus the arc Γw is a convex

arc if and only if

dT

dt
=

d

dt
[arg(z′(t)f ′(z))] ≥ 0, t ∈ [a, b].

The same technique used to derive equation (1.5.1) gives

d

dt
arg(z′(t)f ′(z)) =

d

dt
= [log z′(t) + log f ′(z)]

= =
[

z′′(t
z′(t)

+
d

dz
log f ′(z)

dz

dt

]

= =
[
z′′(t)
z′(t)

+
f ′′(z)

f ′(z)
z′(t)

]
.

Lemma 1.5.2. Suppose that f ′(z) 6= 0 on Γz : z = z(t). Then the

image of Γz under f(z) is a convex arc if and only if

(1.5.2) =
[
z′′(t)
z′(t)

+
f ′′(z)

f ′(z)
z′(t)

]
≥ 0, t ∈ [a, b].

We now specialize these formulas by selecting Γz to be the circle

CR : |z| = R with the usual orientation z = Reit, 0 ≤ t ≤ 2π. In this

case, z′(t) = Reit = iz and z′′(t) = −Reit = −z. The inequality (1.5.1)

10



becomes

=
[

izf ′(z)

f(z)− w0

]
= <

[
zf ′(z)

f(z)− w0

]
≥ 0,

while inequality (1.5.2) becomes

=
[
i +

izf ′′(z)

f ′(z)

]
= <

[
1 +

zf ′′(z)

f ′(z)

]
≥ 0

for z on CR. Thus, a normalized analytic function f is starlike if

and only if f satisfies <
{

zf ′(z)
f(z)

}
> 0, while f is convex if and only if

<
{

1 + zf ′′(z)
f ′(z)

}
> 0. In general, we say that f ∈ S is starlike of order

α, if

<
{

zf ′(z)

f(z)

}
> α, (0 ≤ α < 1)

and convex of order α if

<
{

1 +
zf ′′(z)

f ′(z)

}
> α, (0 ≤ α < 1).

The classes of such functions are denoted by S∗(α) and C(α).

Theorem 1.5.3. If f(z) is in S∗(α), then for |z| ≤ r,

r

(1 + r)2(1−α)
≤ |f(z)| ≤ r

(1− r)2(1−α)

r

(1 + r)3−2α
≤ |f ′(z)| ≤ r

(1− r)3−2α

All inequalities are sharp, with equality if and only if f(z) is a rotation

of k(z, α) = z
(1−z)2(1−α) .

Theorem 1.5.4. Let f(z) be in C(α). Then for |z| ≤ r,

1

(1 + r)2(1−α)
≤ |f ′(z)| ≤ 1

(1− r)2(1−α)
.

11



If α 6= 1/2, then

(1 + r)2α−1 − 1

2α− 1
≤ |f(z)| ≤ 1− (1− r)2α−1

2α− 1

and if α = 1/2, then

ln(1 + r) ≤ |f(z)| ≤ − ln(1− r).

All inequalities are sharp. The extremal functions are rotations of

f(z) =
1− (1− z)2α−1

2α− 1

if α 6= 1/2, and

f(z) = − log(1− z)

for α = 1/2.

Theorem 1.5.5 (Alexander Theorem). Let f ∈ A. Then f(z) ∈

C(α) if and only if F (z) = zf ′(z) ∈ S∗(α)

Proof. Since F (z) = zf ′(z), we have

zF ′(z)

F (z)
= 1 +

zf ′′(z)

f ′(z)
.

Hence

<zF ′(z)

F (z)
> α

if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
> α.

Thus f ∈ C(α) if and only if zf ′ ∈ S∗(α). ¤
12



1.6. Univalent functions with negative coefficients

Let T ⊂ S be the class of all analytic univalent functions f(z) with

negative coefficients of the form

f(z) = z −
∞∑

n=2

anzn (an ≥ 0).

For 0 ≤ α < 1, let TS∗(α) and TC(α) be the subclasses of T consisting

of starlike functions of order α and convex functions of order α respec-

tively. Thus TS∗(α) = T ∩S∗(α) and TC(α) = T ∩C(α). These classes

of functions with negative coefficients were introduced and studied by

Silverman [23]. The following results are known.

Theorem 1.6.1. [23] A function f(z) = z −∑∞
n=2 anz

n ∈ TS∗(α)

if and only if
∞∑

n=2

(n− α)an ≤ 1− α.

Corollary 1.6.2. [23] If f(z) = z −∑∞
n=2 anz

n ∈ TS∗(α), then

an ≤ 1− α

n− α

and the result is sharp for f(z) = z − 1−α
n−α

zn.

Theorem 1.6.3. [23] If f ∈ TS∗(α), then for |z| ≤ r,

(1) r − 1−α
2−α

r2 ≤ |f(z)| ≤ r + 1−α
2−α

r2 with equality for

f(z) = z − (1− α)

2− α
z2.

(2) 1− 2(1−α)
2−α

r ≤ |f ′(z)| ≤ 1 + 2(1−α)
2−α

r and the result is sharp for

f(z) = z − 1− α

2− α
z2 (z = ±r).
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Theorem 1.6.4. [23] A function f(z) = z−∑∞
n=2 anzn is in TC(α)

if and only if

∞∑
n=2

n(n− α)an ≤ 1− α.

Corollary 1.6.5. [23] If f(z) = z −∑∞
n=2 anz

n ∈ TC(α), then

an ≤ 1− α

n(n− α)

and the result is sharp for f(z) = z − (1−α)
n(n−α)

zn.

Theorem 1.6.6. [23] If f ∈ TC(α), then for |z| ≤ r,

(1) r− 1−α
2(2−α)

r2 ≤ |f(z)| ≤ r + 1−α
2(2−α)

r2 and the result is sharp for

f(z) = z − (1− α)z2

2(2− α)
(z = ±r).

(2) 1− 1−α
2−α

r ≤ |f ′(z)| ≤ 1 + 1−α
2−α

r and the result is sharp for

f(z) = z − (1− α)z2

2(2− α)
(z = ±r).

1.7. Functions with positive real part

A function p(z) = 1 + c1z + . . . is called a function with positive

real part provided

<p(z) > 0, (z ∈ ∆).

The class of all such function is denoted by P . More generally we

denote by P (α) the class of analytic functions, p ∈ P with

<p(z) > α (0 ≤ α < 1).

14



Theorem 1.7.1. [10] If p(z) ∈ P , then for each fixed z in ∆ with

|z| ≤ r, p(z) lies in the closed disk with center at (1 + r2)/(1− r2) and

radius 2r/(1− r2), i.e.,

∣∣∣∣p(z)− 1 + r2

1− r2

∣∣∣∣ ≤
2r

1− r2
.

The diameter end points of the disk that contains p(z) are (1−r)/(1+r)

and (1 + r)/(1− r).

To prove the theorem we use the Lindelof principle which is really

a natural extension of Schwarz Lemma.

Definition 1.7.2. Let B0 denote the set of all functions of the form

b(z) =
∞∑

n=1

bnzn = b1z + . . .

that are analytic in ∆ and for which |b(z)| < 1 in ∆. Thus b(z) is

analytic in ∆, b(0) = 0 and |b(z)| ≤ 1 for z in ∆. Such a function b(z)

is called a Schwarzian function.

Theorem 1.7.3 (Schwarz Lemma). Let b(z) be in B0. Then for

each r with 0 ≤ r < 1,

(1.7.1)
∣∣b(reiθ)

∣∣ ≤ r

If equality occurs in equation (1.7.1) at one point z0 = reiθ with

0 ≤ r < 1, then b(z) = eiαz for some real α. Additionally

|b1| = |b′(0)| ≤ 1

and |b1| = 1 if and only if b(z) = B(z) = eiαz.
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Theorem 1.7.3 tells us that the univalent function B(z) = eiαz is

in some sense a maximal function among all bounded functions with

b(0) = 0, or the bounded functions b(z) are "subordinate" to the uni-

valent function B(z). We make this concept of subordination precise,

and we extend it to an arbitrary function in the following definition.

Definition 1.7.4 (Subordination). Let F (z) = a0 + a1z + . . . be

analytic and univalent in ∆ and suppose that F (∆) = D. If f(z) is

analytic in ∆, f(0) = F (0), and f(∆) ⊂ D, the we say that f(z) is

subordinate to F (z) in ∆, and we write

f(z) ≺ F (z).

We also say that F (z) is superordinate to f(z) in ∆.

We observe that in this definition F (z) is univalent in ∆, but

nothing is assumed about the valence of f(z). Both F (z) and f(z)

carry z = 0 into the same point, and f(z) carries ∆ onto some (pos-

sibly multi-sheeted) surface whose projection onto the plane is con-

tained in D. For example, under the conditions on b(z) in Schwarz

Lemma, b(z) ≺ B(z) = eiαz. Suppose now that f(z) ≺ F (z) and

F (∆) = D. Then the inverse F−1 is analytic in D and maps D onto

∆ with F−1(a0) = 0. Hence the composite function b(z) = F−1(f(z))

is analytic in ∆, and maps ∆ into ∆. Further b(0) = F−1(f(0)) =

F−1(a0) = 0. Thus b(z) is a Schwarzian function, and f(z) = F (b(z)).

We have proved the "only if" part of the following theorem.
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Theorem 1.7.5. Let f(z) and F (z) be analytic in ∆, and suppose

that F (z) is univalent in ∆. Then f(z) ≺ F (z) in ∆ if and only if

there exists a Schwarzian function b(z) that satisfies

(1.7.2) f(z) = F (b(z)).

The proof of the "if" part of this theorem is trivial. We note that in

the definition of subordination we assume that F (z) is univalent in ∆.

The concept of subordination can be extended to the case where F (z)

is not univalent, and the simplest way to do this is to use equation

(1.7.2) as its definition. Thus, f(z) ≺ F (z) if and only if there is a

b(z) in B0 such that f(z) = F (b(z)). As an example, if n is a positive

integer, then zn ≺ z in ∆. If we do not demand that F (z) is univalent,

then z2n ≺ z2 in ∆, but z2n+1 is not subordinate to z2 in ∆.

Theorem 1.7.6 (Lindelof Principle). Suppose that f(z) ≺ F (z) in

∆. Then for each r in [0, 1]

f(∆r) ⊂ F (∆r)

where ∆r = {z : |z| ≤ r}. Further, if f(reiθ) is on the boundary of

F (∆r) for one point z0 = reiθ with 0 < r < 1, then there is a real α

such that f(z) = F (eiαz) and f(reiθ) is on the boundary of F (∆r) for

every point z = reiθ in ∆.

Proof. If f(z) ≺ F (z) then by equation (1.7.2) there is a b(z)

such that f(z) = F (b(z)) and b(z) satisfies the conditions of Schwarz’s
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Lemma. Then f(∆r) = F (b(∆r)) ⊂ F (∆r). If there is a z0 such that

0 < r = |z0| < 1 and f(z0) is a boundary point of F (∆r), then |b(z0)| =

r. Hence b(z) = eiαz for some real α and f(z) = F (eiαz). ¤

1.8. The Herglotz representation formula

Theorem 1.8.1 (Herglotz). If p(z) ∈ P , then there is a real-valued

nondecreasing function µ(φ) such that

(1.8.1)

∫ 2π

0

dµ(φ) = 2π

and for each z in ∆

(1.8.2) p(z) =
1

2π

∫ 2π

0

1 + ze−iφ

1− ze−iφ
dµ(φ) =

1

2π

∫ 2π

0

L0(e
−iφz)dµ(φ).

Conversely, if p(z) is defined by equation(1.8.2) and µ(φ) is a nonde-

creasing function satisfying equation (1.8.1), then p(z) ∈ P .

Corollary 1.8.2. If

(1.8.3) p(z) = 1 +
∞∑

n=1

pnzn

is in P , then for all n ≥ 1

pn =
1

π

∫ 2π

0

e−inφdµ(φ).

Theorem 1.8.3. Let p(z) given by (1.8.3) be analytic in ∆ and let

U(z) and V (z) denote the real and imaginary parts of p(z) respectively.

Set z = reiθ and ς = %eiφ. If |z| < |ς| < 1, then

(1.8.4) p(z) =
1

2π

∫ 2π

0

U(%eiθ)
ς + z

ς − z
dφ + iV (0).
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This formula for p(z) is often referred to as the Schwarz’s represen-

tation formula. It expresses p(z) in terms of its real part on a slightly

larger circle |ς| = % > |z|.

Proof. Using Cauchy’s formula and integrating on the circle |ς| =

% < 1 we have

(1.8.5) pn =
1

2πi

∫

|ς|=ρ

p(ς)

ςn+1
dς =

1

2π%n

∫ 2π

0

p(ς)e−inφdφ

for n = 1, 2, . . . . If we put ςn−1 in the numerator, we have instead

(1.8.6) 0 =
1

2πi

∫

|ς|=ρ

p(ς)ςn−1dς =
%n

2π

∫ 2π

0

p(ς)einφdφ

for n = 1, 2, . . .. We divide the above equation by %2n, take the conju-

gate and add the result to equation (1.8.5). This gives

pn =
1

2π%n

∫ 2π

0

(p(ς) + p(ς))e−inφdφ

=
1

2π%n

∫ 2π

0

2U(ς)e−inφdφ

for n = 1, 2, . . . For each such n, we multiply the second of the above

equation by zn and add the resulting equations. Since |z| < %, the

convergence of the infinite series we obtain is assured. Thus

p(z) = p0 +
∞∑

n=1

pnz
n =

1

2π

∫ 2π

0

p(ς)dφ +
∞∑

n=1

zn

2π%n

∫ 2π

0

2U(ς)e−inφdφ

= iV (0) +
1

2π

∫ 2π

0

U(ς)dφ +
1

2π

∫ 2π

0

U(ς)

(
2π∑

n=1

2
zn

ςn

)
dφ

=
1

2π

∫ 2π

0

U(ς)

[
1 + 2

∞∑
n=1

zn

ςn

]
dφ + iV (0)

=
1

2π

∫ 2π

0

U(ς)

[
ς + z

ς − z

]
dφ + iV (0),

which yields equation (1.8.4). If p0 = 1 , then iV (0) = 0. ¤
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1.9. Scope of dissertation

The present work is devoted to the study of certain subclasses of

univalent analytic functions defined in the unit disk ∆ = {z : |z| < 1}.

In Chapter 2, we extend S to the class consisting of p-valent func-

tions of the form

A(p,m) :=

{
f(z) : f(z) = zp +

∞∑
m

anzn

}
,

p,m ∈ N = {1, 2, . . .}. Note that S ⊂ A = A(1, 1).

We define a subclass Tg[p,m, α] of functions in A(p,m) with neg-

ative coefficients and obtain coefficient inequalities. Distortion and

growth estimates for functions in this class as well as inclusion and

closure properties are also determined. A representation theorem is

derived and the Bernardi integral operator is studied.

Let Σp be the class of meromorphic functions of the form f(z) =

1
zp +

∑∞
k=1−p akz

k defined in the unit disk ∆. Functions in Σp are

analytic in the punctured unit disk ∆∗ = ∆ − {0}. In Chapter 3,

inequalities are obtained for meromorphic functions in Σp which are

associated with the Liu-Srivastava linear operator H l,m
p and the mul-

tiplier transform Ip(n, λ). In addition, we obtain sufficient conditions

for f ∈ Σp to satisfy a growth inequality.
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CHAPTER 2

A CLASS OF P-VALENT FUNCTIONS WITH
NEGATIVE COEFFICIENTS

2.1. Introduction

Consider the class of p-valent analytic functions

A(p, m) =

{
f(z) = zp +

∞∑
n=m

anzn, (p,m ∈ N , z ∈ ∆)

}
.

Note that S ⊂ A = A(1, 1).

Let f, g ∈ A(p,m). The convolution of f(z) = zp +
∑∞

n=m anzn and

g(z) = zp +
∑∞

n=m bnz
n, denoted by (f ∗ g)(z), is defined by

(f ∗ g)(z) = zp +
∞∑

n=m

anbnz
n.

For a fixed function g(z) = zp +
∑∞

n=m gnz
n, the subclass Tg(p,m, α) is

defined by

Tg(p,m, α) =

{
f ∈ A(p,m) : <

(
(f ∗ g)(z)

zp

)
> α, 0 ≤ α < 1

}
.

If now g(z) has positive coefficients, i.e.,

g(z) = zp +
∞∑

n=m

gnz
n, (gn > 0),

then we shall denote the subclass of Tg(p, m, α) consisting of functions

f(z) = zp −
∞∑

n=m

anz
n, (an ≥ 0)

by Tg[p, m, α]. We shall prove several interesting properties of functions

with negative coefficients in the class Tg[p,m, α].
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The class of TH which is considered by Janteng et.al [13] is a special

case of Tg[p,m, α]. In fact, TH = Tg[1, 2, α] where

g(z) =
z

(1− z)2
+

∞∑
n=2

βn(n− 1)zn

= z +
∞∑

n=2

n[1 + β(n− 1)]zn.

2.2. Coefficient inequalities

Theorem 2.2.1. If f ∈ A(p,m) satisfies
∑∞

n=m |angn| ≤ 1−α,0 ≤

α < 1, then f ∈ Tg(p, m, α).

Proof. Let
∑∞

n=m |angn| ≤ 1− α. Then

∣∣∣∣
(f ∗ g)(z)

zp
− 1

∣∣∣∣ =

∣∣∣∣
zp +

∑∞
n=m angnz

n

zp
− 1

∣∣∣∣

≤
∞∑

n=m

|angn||z|n−p ≤
∞∑

n=m

|angn|

≤ 1− α.

Thus
∣∣∣ (f∗g)(z)

zp − 1
∣∣∣ ≤ 1− α. Since −<w ≤ |w|, we have

−<
(

(f ∗ g)(z)

zp
− 1

)
≤ 1− α,

or

<(f ∗ g)(z)

zp
≥ α.

Thus f ∈ Tg(p,m, α) ¤

Theorem 2.2.2. Let f(z) = zp −∑∞
n=2 anzn, an ≥ 0. The func-

tion f belongs to Tg[p,m, α] if and only if

∞∑
n=m

angn ≤ 1− α.
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Proof. Let f ∈ Tg[p,m, α]. By letting z → 1− through real values

in the condition <
{

(f∗g)(z)
zp

}
> α, we get 1 − ∑∞

n=m angn ≥ α. The

converse follows from Theorem 2.2.1. ¤

Corollary 2.2.3. If f ∈ Tg[p,m, α], then for n ≥ m,

an ≤ 1− α

gn

,

and the result is sharp for

f(z) = zp − 1− α

gn

zn.

Proof. Since f ∈ Tg[p, m, α], we have

angn ≤
∞∑

n=m

angn ≤ 1− α

or

an ≤ 1− α

gn

.

Clearly equality holds for

f(z) = zp − 1− α

gn

zn.

¤

2.3. Growth and distortion inequalities

Corollary 2.3.1. If f ∈ Tg[p,m, α], then

rp − 1− α

gm

rm ≤ |f(z)| ≤ rp +
1− α

gm

rm, |z| = r < 1,

provided gn ≥ gm ≥ 1. These inequalities are sharp for

f(z) = zp − 1− α

gm

zm.
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Proof. For f(z) ∈ Tg[p,m, α], we have

gm

∞∑
n=m

an ≤
∞∑

n=m

gnan ≤ 1− α,

or

∞∑
n=m

an ≤ 1− α

gm

.

Therefore for |z| = r,

|f(z)| ≤ |z|p + |z|m
∞∑

n=m

|z|n−man

≤ |z|p + |z|m
∞∑

n=m

an

≤ rp + rm 1− α

gm

.

To verify the sharpness, consider the function f(z) = zp − 1−α
gm

zn. For

this function, we have

|f(z)| = |zp − 1− α

gm

zm| = |z|p|1− 1− α

gm

zm−p|.

We next choose z on |z| = r such that z = (−1)
1

m−p r = e
iπ(1+2k)

m−p r, k =

0, 1 . . . , m−p−1. The other inequality is shown in a similar manner. ¤

Corollary 2.3.2. If f ∈ Tg[p,m, α], then for |z| ≤ r

prp−1 − rm−1m
1− α

gm

≤ |f ′(z)| ≤ prp−1 +
m(1− α)

gm

rm−1,

provided gn

n
is increasing function of n. The result is sharp for the

function f(z) = zp − 1−α
gm

zm.

Proof. Since gn

n
is increasing, we have

∞∑
n=m

nan ≤ m

gm

∞∑
n=m

angn ≤ m

gm

(1− α),
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and hence

|f ′(z)| ≤ p|z|p−1 +
∞∑

n=m

n|z|n−1an

≤ prp−1 + rm−1 m

gm

(1− α).

For the function f(z) = zp − 1−α
gm

zn, we have

|f ′(z)| = |pzp−1 − m(1− α)

gm

zm−1|

= |z|p−1|p− m(1− α)

gm

zm−p|

Choose z on |z| = r so that z = (−1)
1

m−p r = e
iπ(1+2k)

m−p r, k =

0, 1 . . . , m− p− 1. This shows that the result is sharp.

The other inequality is shown in a similar manner. ¤

2.4. Inclusion and closure theorems

Theorem 2.4.1. Let g∗n ≤ gn, α2 ≤ α1. Then

Tg[p,m, α1] ⊆ Tg∗ [p,m, α2].

Proof. If f ∈ Tg[p,m, α1], then
∑∞

n=m angn ≤ 1− α1. Now

∞∑
n=m

ang∗n ≤
∞∑

n=m

angn ≤ 1− α1 ≤ 1− α2

so that f ∈ Tg[p,m, α2]. ¤

Theorem 2.4.2. Let fi ∈ Tg[p,m, α] for i = 1, 2, . . . , N where 0 ≤

α < 1 and
∑N

i=1 βi = 1. Then

f(z) =
N∑

i=1

βifi(z) ∈ Tg[p,m, α].
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Proof. Let fi ∈ Tg[p, m, α], be given by fi(z) = zp +
∑∞

n=m an,iz
n.

Then

∞∑
n=m

an,ign ≤ 1− α

and therefore

∞∑
n=m

N∑
i=1

βian,ign =
N∑

i=1

βi

( ∞∑
n=m

an,ign

)

≤ (1− α)
N∑

i=1

βi

= 1− α.

This proves the result. ¤

Theorem 2.4.3. If h(z) = zp +
∑∞

n=m hnzn satisfies 0 ≤ hn ≤ 1,

and f ∈ Tg[p,m, α], then f ∗ h ∈ Tg[p,m, α].

Proof. For f ∈ Tg[p,m, α], we have

∞∑
n=m

angnhn ≤
∞∑

n=m

angn ≤ 1− α.

Therefore f ∗ h ∈ Tg[p, m, α]. ¤

If f ∈ A(p,m), the Bernardi integral operator is the function

F (z) =
c + p

zc

∫ z

0

tc−1f(t)dt, (c > −p).

Theorem 2.4.4. If f(z) ∈ Tg[p,m, α], then the Bernardi integral

F (z) ∈ Tg[p,m, α], (c > −p).
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Proof. Since

F (z) =
c + p

zc

∫ z

0

tc−1f(t)dt

=
c + p

zc

∫ z

0

(
tp+c−1 −

∞∑
n=m

ant
c−1+n

)
dt

=
c + p

zc

[
tp+c

p + c
−

∞∑
n=m

antc+n

c + n

]z

0

=
c + p

zc

[
zp+c

p + c
−

∞∑
n=m

anzc+n

c + n

]
,

we have

F (z) = zp −
∞∑

n=m

c + p

c + n
anzn.

Thus F (z) = f(z) ∗ h(z) where

h(z) = zp +
∞∑

n=m

c + p

c + n
zn = zp +

∞∑
n=m

hnz
n

with hn = c+p
c+n

. Since 0 ≤ hn ≤ 1, the result follows from Theorem

2.4.3. ¤

2.5. A representation theorem

Theorem 2.5.1. Define the function

hp(z) = zp

hn(z) = zp − 1−α
gn

zn, for n = m,m + 1, . . .

Let λn ≥ 0 and λp +
∑∞

n=m λn = 1. Then f ∈ Tg[p, m, α] if and only if

(2.5.1) f(z) = λphp(z) +
∞∑

n=m

λnhn(z).
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Proof. If f is given by equation (2.5.1), then

f(z) = λpz
p +

∞∑
n=m

λn

[
zp − 1− α

gn

zn

]

= zp −
∞∑

n=m

λn
1− α

gn

zn.

Now

∞∑
n=m

λn
1− α

gn

gn =
∞∑

n=m

λn(1− α)

= (1− α)(1− λp)

≤ 1− α.

Thus from Theorem 2.2.2 , f ∈ Tg[p, m, α]. Conversely, let f ∈

Tg[p,m, α]. Define λn by

λn =
gnan

1− α

and

λp = 1−
∞∑

n=m

λn

Thus

f(z) = zp −
∞∑

n=m

anz
n = zp −

∞∑
n=m

λn
1− α

gn

zn

= zp +
∞∑

n=m

λn(hn − zp)

= (1−
∞∑

n=m

λn)zp +
∑

λnhn

= λpz
p +

∞∑
n=m

λnhn.

This completes the proof. ¤
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CHAPTER 3

INEQUALITIES FOR MEROMORPHIC
FUNCTIONS DEFINED BY CERTAIN LINEAR

OPERATORS

3.1. Introduction

Let Σp denote the class of all analytic functions of the form

(3.1.1) f(z) =
1

zp
+

∞∑

k=1−p

akz
k (z ∈ ∆∗ := {z ∈ C : 0 < |z| < 1})

and let Σ1 := Σ. For two functions f(z) given by (3.1.1) and g(z) =

1
zp +

∑∞
k=1−p bkz

k, the Hadamard product (or convolution) of f and g

is defined by

(3.1.2) (f ∗ g)(z) :=
1

zp
+

∞∑

k=1−p

akbkz
k =: (g ∗ f)(z).

For αj ∈ C (j = 1, 2, . . . , l) and βj ∈ C \ {0,−1,−2, . . .} (j =

1, 2, . . .m), the generalized hypergeometric function lFm(α1, . . . , αl; β1, . . . , βm; z)

is defined by the infinite series

lFm(α1, . . . , αl; β1, . . . , βm; z) :=
∞∑

n=0

(α1)n . . . (αl)n

(β1)n . . . (βm)n

zn

n!

(l ≤ m + 1; l,m ∈ N0 := {0, 1, 2, . . .})

where (a)n is the Pochhammer symbol defined by

(a)n :=
Γ(a + n)

Γ(a)
=

{
1, (n = 0);
a(a + 1)(a + 2) . . . (a + n− 1), (n ∈ N := {1, 2, 3 . . .}).
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Corresponding to the function

hp(α1, . . . , αl; β1, . . . , βm; z) := z−p
lFm(α1, . . . , αl; β1, . . . , βm; z),

the Liu-Srivastava operator [18] H
(l,m)
p (α1, . . . , αl; β1, . . . , βm) is defined

by the Hadamard product

H(l,m)
p (α1, . . . , αl; β1, . . . , βm)f(z) = hp(α1, . . . , αl; β1, . . . , βm; z) ∗ f(z)

= 1
zp +

∑∞
n=1−p

(α1)n+p...(αl)n+p

(β1)n+p...(βm)n+p

anzn

(n+p)!
.

To make the notation simple, we write

H l,m
p [α1]f(z) := H(l,m)

p (α1, . . . , αl; β1, . . . , βm)f(z).

Special cases of the Liu-Srivastava linear operator includes the mero-

morphic analogue of the Carlson-Shaffer linear operator Lp(a, c) :=

H
(2,1)
p (1, a; c) considered by Liu [16] and the operator Dn+1 := Lp(n +

p, 1) investigated by Yang [26] (which is analogous to the Ruscheweyh

derivative operator), and the operator Jc,p = Lp(c, c + 1) studied, for

example, by Uralegaddi and Somanatha [25]. Note that

Jc,pf =
c

zc+p

∫ z

0

tc+p−1f(t)dt (c > 0).

Motivated by the operator studied by Aouf and Hossen [3] (see also

[6, 16, 22]), we define the operator Ip(n, λ) on Σp by the following

infinite series

(3.1.3) Ip(n, λ)f(z) :=
1

zp
+

∞∑

k=1−p

(
k + λ

λ− p

)n

akz
k (λ ≥ p).
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In our present investigation, we extend the following two theo-

rems of Miller and Mocanu [20] for functions associated with the Liu-

Srivastava linear operator H l,m
p and the multiplier transform Ip(n, λ).

Definition 3.1.1. Let H = H(∆) denote the class of functions

analytic in ∆. For n a positive integer and a ∈ C, let

H[a, n] = {f ∈ H : f(z) = a + anz
n + an+1z

n+1 + . . .},

with H0 = H[0, 1].

Definition 3.1.2. We denote by Q the set of functions q that are

analytic and injective on ∆ \ E(q), where

E(q) = {ς ∈ ∂∆; lim
z→ς

q(z) = ∞}

and are such that q′(ς) 6= 0 for ς ∈ ∂∆ \ E(q).

Definition 3.1.3. Let Ω be a set in C, q ∈ Q and n be a positive

integer. The class of admissible functions Ψn[Ω, q] consists of those

functions Ψ : C3 × ∆ → C that satisfy the admissibility condition

Ψ(r, s, t; z) 6∈ Ω whenever r = q(ς), s = mςq′(ς),

<
{

t

s
+ 1

}
≥ m<

{
ςq′′(ς)
q′(ς

+ 1

}
,

z ∈ ∆, ς ∈ ∂∆ \ E(q) and m ≥ n. We write Ψ1[Ω, q] as Ψ[Ω, q].

Let ∆M = {w : |w| < M}. The function q(z) = M Mz+a
M+az

, with M >

0 and |a| < M, satisfies q(∆) = ∆M , q(0) = 1, E(q) = ∅ and q ∈ Q.
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We set Ψn[Ω,M, a] := Ψn[Ω, q] and in the special case when Ω = ∆,

we denote the class by Ψn[M, a].

Theorem 3.1.4. [20, Theorem 2.3h, p.34] Let p ∈ H[a, n]

(1) If ψ ∈ ψn[Ω,M, a], then

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω ⇒ |p(z)| < M

(2) If ψ ∈ ψn[M,a], then

|ψ(p(z), zp′(z), z2p′′(z); z)| < M ⇒ |p(z)| < M

To prove our results, we need the following lemma due to Miller

and Mocanu.

Lemma 3.1.5. [20, cf. Lemma 2.2a, p. 19; Lemma 2.2e, p. 25]

Let w(z) = a + wmzm + · · · be analytic in ∆ with w(z) 6≡ a and

m ≥ 1. If z0 = r0e
iθ (0 < r0 < 1) and |w(z0)| = max|z|≤r0 |w(z)|,

then z0w
′(z0) = kw(z0) and <

(
1 + z0w′′(z0)

w′(z0)

)
≥ k, where k is real and

k ≥ m.

3.2. Inequalities associated with the Liu-Srivastava linear

operator

We begin with the following definition for a class of functions.

Definition 3.2.1. Let G1 be the set of complex-valued functions

g(r, s, t) : C3 → C such that

(1) g(r, s, t) is continuous in a domain D ⊂ C3,
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(2) (0, 0, 0) ∈ D and |g(0, 0, 0)| < 1,

(3)
∣∣∣g

(
eiθ, k+α1−1

α1
eiθ, L+α1(2k+α1−1)eiθ

α1(α1+1)

)∣∣∣ ≥ 1,

whenever
(
eiθ, k+α1−1

α1
eiθ, L+α1(2k+α1−1)eiθ

α1(α1+1)

)
≥ 1 for all θ, L, k ≥ 1 satis-

fying <(e−iθL) ≥ k(k − 1).

Making use of Lemma 3.1.5, we first prove the theorem below.

Theorem 3.2.2. Let g(r, s, t) ∈ G1. If f(z) ∈ Σp satisfies

(
zp+1H l,m

p [α1]f(z), zp+1H l,m
p [α1 + 1]f(z), zp+1H l,m

p [α1 + 2]f(z)
) ∈ D ⊂ C3

and for z ∈ ∆,

∣∣g (
zp+1H l,m

p [α1]f(z), zp+1H l,m
p [α1 + 1]f(z), zp+1H l,m

p [α1 + 2]f(z)
)∣∣ < 1,

then we have

∣∣zp+1H l,m
p [α1]f(z)

∣∣ < 1, (z ∈ ∆).

Proof. Define w(z) by

(3.2.1) w(z) := zp+1H l,m
p [α1]f(z).

Then

w(z) = zp+1

(
1

zp
+

∞∑
n=1−p

(α1)n+p . . . (αl)n+p

(β1)n+p . . . (βm)n+p

anzn

(n + p)!

)

= z +
∞∑

n=2

(α1)n−1 . . . (αl)n−1

(β1)n−1 . . . (βm)n−1

an−p−1z
n

(n− 1)!

is analytic in ∆ and w(z) 6= 0 at least for one z ∈ ∆. By differentiating

(3.2.1) and then multiplying by z, we get

zw′(z) = (p + 1)zp+1H l,m
p [α1]f(z) + zp+1z[H l,m

p [α1]f(z)]′.
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From the relation

(3.2.2) α1H
l,m
p [α1 + 1]f(z) = z[H l,m

p [α1]f(z)]′ + (α1 + p)H l,m
p [α1]f(z),

we get

(3.2.3) α1z
p+1H l,m

p [α1 + 1]f(z) = zw′(z) + (α1 − 1)w(z).

Differentiating (3.2.3) and multiplying by z yields

α1z
p+1z[H l,m

p [α1 + 1]f(z)]′ + α1(p + 1)zp+1H l,m
p [α1 + 1]f(z)

= z2w′′(z) + α1zw
′(z).

Using (3.2.2) in the above equation, we get

α1z
p+1[(α1 + 1)H l,m

p [α1 + 2]f(z)− (α1 + p + 1)H l,m
p [α1 + 1]f(z)]

+ α1(p + 1)zp+1H l,m
p [α1 + 1]f(z)

= z2w′′(z) + α1zw
′(z).

Using (3.2.3) in the above equation, we get

α1(α1 + 1)zp+1H l,m
p [α1 + 2]f(z) = z2w′′(z) + 2α1zw

′(z) + α1(α1 − 1)w(z).

If |zp+1H l,m
p [α1]f(z)| < 1 is false, then there exists z0 with |z0| = r0 < 1

such that

|w(z0)| = max
|z|≤|z0|

|w(z)| = 1.
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Letting w(z0) = eiθ and using Lemma 3.1.5, we see that

zp+1
0 H l,m

p [α1]f(z0) = eiθ,

zp+1
0 H l,m

p [α1 + 1]f(z0) =
z0w

′(z0) + (α1 − 1)w(z0)

α1

=
kw(z0) + (α1 − 1)w(z0)

α1

=
k + α1 − 1

α1

eiθ,

and

zp+1
0 H l,m

p [α1 + 2]f(z0) =
z2
0w

′′(z0) + 2α1z0w
′(z0) + α1(α1 − 1)w(z0)

α1(α1 + 1)

=
L + 2α1kw(z0) + α1(α1 − 1)w(z0)

α1(α1 + 1)

=
L + α1(2k + α1 − 1)eiθ

α1(α1 + 1)
,

where L = z2
0w

′′(z0) and k ≥ 1. Further, by an application of Lemma 3.1.5,

we have

<
{

z0w
′′(z0)

w′(z0)

}
= <

{
z2
0w

′′(z0)

keiθ

}
≥ k − 1,

or <{e−iθL} ≥ k(k − 1). Since g(r, s, t) ∈ G1, we have

∣∣g (
zp+1
0 H l,m

p [α1]f(z0), z
p+1
0 H l,m

p [α1 + 1]f(z0), z
p+1
0 H l,m

p [α1 + 2]f(z0)
)∣∣

=

∣∣∣∣g
(

eiθ,
k + α1 − 1

α1

eiθ,
L + α1(2k + α1 − 1)eiθ

α1(α1 + 1)

)∣∣∣∣ ≥ 1,

which contradicts the hypothesis of Theorem 3.2.2. Therefore we con-

clude that

|w(z)| =
∣∣zp+1H l,m

p [α1]f(z)
∣∣ < 1 (z ∈ ∆).

This completes the proof of Theorem 3.2.2. ¤
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Corollary 3.2.3. If f(z) ∈ Σp satisfies

|zp+1H l,m
p [α1 + 1]f(z)| < 1 (<α1 ≥ 0)

then

|zp+1H l,m
p [α1]f(z)| < 1.

Proof. The result follows by taking g(r, s, t) : C3 → C to be the

function defined by g(r, s, t) = s. For this function,

∣∣∣∣g
(

eiθ,
k + α1 − 1

α1

eiθ,
L + α1(2k + α1 − 1)eiθ

α1(α1 + 1)

)∣∣∣∣ =

∣∣∣∣
k + α1 − 1

α1

eiθ

∣∣∣∣ ≥ 1

if

|k + α1 − 1| ≥ |α1|

or if

(k − 1)2 + 2(k − 1)<α1 + |α1|2 ≥ |α1|2

or if

2<α1 ≥ −(k − 1)2

k − 1
= 1− k.

Since k ≥ 1, this condition holds if <α1 ≥ 0. Thus g ∈ G1. The result

follows from Theorem 3.2.2. ¤

Definition 3.2.4. Let G2 be the set of complex-valued functions

g(r, s, t) : C3 → C such that

(1) g(r, s, t) is continuous in a domain D ⊂ C3,

(2) (1, 1, 1) ∈ D and |g(1, 1, 1)| < 1,
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(3)
∣∣∣g

(
eiθ, 1+k+α1eiθ

1+α1
, 2+k+α1eiθ

α1+2
+ k[1−k+L+α1eiθ]

(α1+2)(1+k+α1eiθ)

)∣∣∣ ≥ 1,

whenever
(
eiθ, 1+k+α1eiθ

1+α1
, 2+k+α1eiθ

α1+2
+ k[1−k+L+α1eiθ]

(α1+2)(1+k+α1eiθ)

)
∈ D with <(L) ≥

k − 1 for real θ, α1 ∈ C and k ≥ 1.

Making use of the above Lemma 3.1.5, we now prove

Theorem 3.2.5. Let g(r, s, t) ∈ G2. If f(z) ∈ Σp satisfies

(
H l,m

p [α1 + 1]f(z)

H l,m
p [α1]f(z)

,
H l,m

p [α1 + 2]f(z)

H l,m
p [α1 + 1]f(z)

,
H l,m

p [α1 + 3]f(z)

H l,m
p [α1 + 2]f(z)

)
∈ D ⊂ C3

and

∣∣∣∣∣g
(

H l,m
p [α1 + 1]f(z)

H l,m
p [α1]f(z)

,
H l,m

p [α1 + 2]f(z)

H l,m
p [α1 + 1]f(z)

,
H l,m

p [α1 + 3]f(z)

H l,m
p [α1 + 2]f(z)

)∣∣∣∣∣ < 1, (z ∈ ∆),

then we have

∣∣∣∣∣
H l,m

p [α1 + 1]f(z)

H l,m
p [α1]f(z)

∣∣∣∣∣ < 1, (z ∈ ∆).

Proof. Define w(z) by

(3.2.4) w(z) =
H l,m

p [α1 + 1]f(z)

H l,m
p [α1]f(z)

w(z) =

1
zp +

∑∞
n=1−p

(α1+1)n+p...(αl+1)n+p

(β1+1)n+p...(βm+1)n+p

anzn

(n+p)!

1
zp +

∑∞
n=1−p

(α1)n+p...(αl)n+p

(β1)n+p...(βm)n+p

anzn

(n+p)!

= 1 + d1z + d2z
2 + . . .

Then w(z) is analytic in ∆ and w(z) 6= 1 at least for one z ∈ ∆. By

logarithmic differentiation yields

zw′(z)

w(z)
=

z[H l,m
p [α1 + 1]f(z)]′

H l,m
p [α1 + 1]f(z)

− z[H l,m
p [α1]f(z)]′

H l,m
p [α1]f(z)

,
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and from relation (3.2.2), we get

zw′(z)

w(z)
=

(α1 + 1)H l,m
p [α1 + 2]f(z)− (α1 + p + 1)H l,m

p [α1 + 1]f(z)

H l,m
p [α1 + 1]f(z)

− α1[H
l,m
p [α1 + 1]f(z)− (α1 + p)H l,m

p [α1]f(z)

H l,m
p [α1]f(z)

=
(α1 + 1)H l,m

p [α1 + 2]f(z)

H l,m
p [α1 + 1]f(z)

− (α1 + 1 + p)

− α1w(z) + (α1 + p).

Thus

H l,m
p [α1 + 2]f(z)

H l,m
p [α1 + 1]f(z)

=
1

1 + α1

[
1 + α1w(z) +

zw′(z)

w(z)

]
.

Differentiating logarithmically, we get

z[H l,m
p [α1 + 2]f(z)]′

H l,m
p [α1 + 2]f(z)

− z[H l,m
p [α1 + 1]f(z)]′

H l,m
p [α1 + 1]f(z)

=

z2w′′(z)
w(z)

+ α1zw
′(z) + zw′(z)

w(z)
−

(
zw′(z)
w(z)

)2

1 + α1w(z) + zw′(z)
w(z)

.

From the relation (3.2.2) we get

(α1 + 2)H l,m
p [α1 + 3]f(z)

H l,m
p [α1 + 2]f(z)

− (α1 + 2 + p)

− (1 + α1w(z) +
zw′(z)

w(z)
) + (α1 + 1 + p)

=

z2w′′(z)
w(z)

+ α1zw
′(z) + zw′(z)

w(z)
−

(
zw′(z)
w(z)

)2

1 + α1w(z) + zw′(z)
w(z)

Then

H l,m
p [α1 + 3]f(z)

H l,m
p [α1 + 2]f(z)

=
1

2 + α1


2 + α1w(z) +

zw′(z)

w(z)
+

α1zw
′(z) + zw′(z)

w(z)
+ z2w′′(z)

w(z)
−

(
zw′(z)
w(z)

)2

1 + α1w(z) + zw′(z)
w(z)



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If
∣∣∣Hl,m

p [α1+1]f(z)

Hl,m
p [α1]f(z)

∣∣∣ < 1 is false, then there exists z0 with |z0| = r0 < 1

such that

|w(z0)| = max
|z|≤|z0|

|w(z)| = 1.

Letting w(z0) = eiθ and using Lemma 3.1.5, we see that

H l,m
p [α1 + 1]f(z0)

H l,m
p [α1]f(z0)

= eiθ,

H l,m
p [α1 + 2]f(z0)

H l,m
p [α1 + 1]f(z0)

=
1 + k + α1e

iθ

1 + α1

,

and

H l,m
p [α1 + 3]f(z0)

H l,m
p [α1 + 2]f(z0)

=
1

2 + α1

[
2 + k + α1e

iθ +
k(1− k) + kL + kα1e

iθ

k + 1 + α1eiθ

]
,

where L =
z2
0w′′(z0)

kw(z0)
satisfies <(L) ≥ k − 1, k ≥ 1. Since g(r, s, t) ∈ G2,

we have

∣∣∣g
(

Hl,m
p [α1+1]f(z0)

Hl,m
p [α1]f(z0)

,
Hl,m

p [α1+2]f(z0)

Hl,m
p [α1+1]f(z0)

,
Hl,m

p [α1+3]f(z0)

Hl,m
p [α1+2]f(z0)

)∣∣∣

=
∣∣∣g

(
eiθ, 1+k+α1eiθ

1+α1
, 1

α1+2

[
2 + k + α1e

iθ + k[1−k+L+α1eiθ]
k+1+α1eiθ

])∣∣∣ ≥ 1,

which contradicts the hypothesis of Theorem 3.2.5. Therefore we con-

clude that

|w(z)| =
∣∣∣∣∣
H l,m

p [α1 + 1]f(z)

H l,m
p [α1]f(z)

∣∣∣∣∣ < 1 (z ∈ ∆).

This completes the proof of Theorem 3.2.5. ¤

3.3. Inequalities associated with multiplier transform

In this section, we prove results similar to Theorem 3.2.2 and The-

orem 3.2.5 for functions defined by multiplier transform. We need the

following:
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Definition 3.3.1. Let G3 be the set of complex-valued functions

g(r, s, t) : C3 → C such that

(1) g(r, s, t) is continuous in a domain D ⊂ C3,

(2) (0, 0, 0) ∈ D and |g(0, 0, 0)| < 1,

(3)
∣∣∣g

(
eiθ, λ−p+k−1

λ−p
eiθ, L+[(2λ−2p−1)k+(λ−p−1)2]eiθ

(λ−p)2

)∣∣∣ ≥ 1,

whenever
(
eiθ, λ−p+k−1

λ−p
eiθ, L+[(2λ−2p−1)k+(λ−p−1)2]eiθ

(λ−p)2

)
∈ D, with <(e−iθL) ≥

k(k − 1) for real θ, λ ≥ 0 and k ≥ 1.

Theorem 3.3.2. Let g(r, s, t) ∈ G3. If f(z) ∈ Σp satisfies

(
zp+1Ip(n, λ)f(z), zp+1Ip(n + 1, λ)f(z), zp+1Ip(n + 2, λ)f(z)

) ∈ D ⊂ C3

and

∣∣g(
zp+1Ip(n, λ)f(z), zp+1Ip(n + 1, λ)f(z), zp+1Ip(n + 2, λ)f(z)

)∣∣ < 1, (z ∈ ∆),

then we have

|zp+1Ip(n, λ)f(z)| < 1, (z ∈ ∆).

Proof. Define w(z) by

(3.3.1) w(z) := zp+1Ip(n, λ)f(z).

= z +
∞∑

k=1−p

(
k + λ

λ− p

)n

akz
k+p+1

= z +
∞∑

k=2

(
k − p− 1

λ− p

)n

ak−p−1z
k

Then w(z) is analytic in ∆ and w(z) 6= 0 at least for one z ∈ ∆.

Differentiating (3.3.1) and multiplying by z yields

zw′(z) = zp+1z(Ip(n, λ)f(z))′ + (p + 1)zp+1Ip(n, λ)f(z).
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From the relation

(3.3.2) (λ− p)Ip(n + 1, λ)f(z) = z[Ip(n, λ)f(z)]′ + λIp(n, λ)f(z)

we get

zw′(z) = zp+1[(λ− p)Ip(n + 1, λ)f(z)− λIp(n, λ)f(z)] + (p + 1)w(z).

Then we get

zw′(z) = (λ− p)zp+1Ip(n + 1, λ)f(z)− λw(z) + (p + 1)w(z).

And hence

(3.3.3) (λ− p)zp+1Ip(n + 1, λ)f(z) = zw′(z) + (λ− p− 1)w(z).

Differentiating (3.3.3) and multiplying by z yields

zp+1
0 Ip(n, λ)f(z0) = eiθ,

zp+1
0 Ip(n + 1, λ)f(z0) =

kw(z0) + (λ− p− 1)w(z0)

λ− p

=
(k + λ− p− 1)eiθ

λ− p

and

zp+1
0 Ip(n + 2, λ)f(z0) =

L + (2λ− 2p− 1)kw(z) + (λ− p− 1)2w(z)

(λ− p)2

=
L + [(2λ− 2p− 1)k + (λ− p− 1)2]eiθ

(λ− p)2
,

where L = z2
0w

′′(z0) and k ≥ 1. Further, an application of Lemma 3.1.5

we obtain that

<
{

z0w
′′(z0)

w′(z0)

}
= <

{
z2
0w

′′(z0)

keiθ

}
≥ k − 1,
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or <{e−iθL} ≥ k(k − 1). Since g(r, s, t) ∈ G3, we have

∣∣g(
zp+1Ip(n, λ)f(z0), z

p+1Ip(n + 1, λ)f(z0), z
p+1Ip(n + 2, λ)f(z0)

)∣∣

=

∣∣∣∣g
(

eiθ,
λ− p + k − 1

λ− p
eiθ,

L + [(2λ− 2p− 1)k + (λ− p− 1)2]eiθ

(λ− p)2

)∣∣∣∣ ≥ 1,

which contradicts the hypothesis of Theorem 3.3.2. Therefore we con-

clude that

|w(z)| = |zp+1Ip(n, λ)f(z)| < 1, (z ∈ ∆).

This completes the assertion of Theorem 3.3.2. ¤

Corollary 3.3.3. If f(z) ∈ Σp satisfies

|zp+1Ip(n, λ + 1)f(z)| < 1, (<λ > p)

then

|zp+1Ip(n, λ)f(z)| < 1.

Proof. The result follows by defining g(r, s, t) : C3 → C by g(r, s, t) =

s. For this function, we have

∣∣∣∣g
(

eiθ,
λ− p + k − 1

λ− p
eiθ,

L + [(2λ− 2p− 1)k + (λ− p− 1)2]eiθ

(λ− p)2

)∣∣∣∣ =

∣∣∣∣
λ− p + k − 1

λ− p
eiθ

∣∣∣∣ ≥ 1

Provided

(k − 1)2 + 2(k − 1)<(λ− p) + |λ− p|2 ≥ |λ− p|2.

This is equivalent to

2<(λ− p) ≥ −(k − 1)2

k − 1
= 1− k, k ≥ 1,

which holds if <(λ− p) ≥ 0. Thus g ∈ G3. ¤
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Definition 3.3.4. Let G4 be the set of complex-valued functions

g(r, s, t) : C3 → C such that

(1) g(r, s, t) is continuous in a domain D ⊂ C3,

(2) (1, 1, 1) ∈ D and |g(1, 1, 1)| < 1,

(3)

∣∣∣∣g
(

eiθ, eiθ + k
λ−p

, +
k[eiθ+L+1−k

λ−p ]
(λ−p)eiθ+k

)∣∣∣∣ ≥ 1,

whenever

(
eiθ, eiθ + k

λ−p
, eiθ + k

λ−p
+

k[eiθ+L+1−k
λ−p ]

(λ−p)eiθ+k

)
∈ D with <L ≥ k−

1 for real θ, λ ≥ 0 and real k ≥ 1.

Theorem 3.3.5. Let g(r, s, t) ∈ G4. If f(z) ∈ Σp satisfies

(
Ip(n + 1, λ)f(z)

Ip(n, λ)f(z)
,
Ip(n + 2, λ)f(z)

Ip(n + 1, λ)f(z)
,
Ip(n + 3, λ)f(z)

Ip(n + 2, λ)f(z)

)
∈ D ⊂ C3

and

∣∣∣∣g
(

Ip(n + 1, λ)f(z)

Ip(n, λ)f(z)
,
Ip(n + 2, λ)f(z)

Ip(n + 1, λ)f(z)
,
Ip(n + 3, λ)f(z)

Ip(n + 2, λ)f(z)

)∣∣∣∣ < 1, (z ∈ ∆),

then we have

∣∣∣∣
Ip(n + 1, λ)f(z)

Ip(n, λ)f(z)

∣∣∣∣ < 1, (z ∈ ∆).

Proof. Define w(z) by

w(z) :=
Ip(n + 1, λ)f(z)

Ip(n, λ)f(z)

=
z +

∑∞
k=1−p

(
k+λ
λ−p

)n+1

akz
k+p+1

z +
∑∞

k=1−p

(
k+λ
λ−p

)n

akzk+p+1
= 1 + e1z + e2z

2 + . . . .

Then w(z) is analytic in ∆ and w(z) 6= 1 at least for one z ∈ ∆. By

logarithmic differentiation, we get

zw′(z)

w(z)
=

z(Ip(n + 1, λ)f(z))′

Ip(n + 1, λ)f(z)
− z(Ip(n, λ)f(z))′

Ip(n, λ)f(z)
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By making use of (3.3.2) we get

zw′(z)

w(z)
=

(λ− p)Ip(n + 2, λ)f(z)− (λ)Ip(n + 1, λ)f(z)

Ip(n + 1, λ)f(z)

−(λ− p)Ip(n + 1, λ)f(z)− λIp(n, λ)f(z)

Ip(n, λ)f(z)

=
(λ− p)Ip(n + 2, λ)f(z)

Ip(n + 1, λ)f(z)
− (λ− p)w(z).

Then

(λ− p)Ip(n + 2, λ)f(z)

Ip(n + 1, λ)f(z)
=

zw′(z)

w(z)
+ (λ− p)w(z).

Differentiating logarithmically the above equation yields

z(Ip(n + 2, λ)f(z))′

Ip(n + 2, λ)f(z)
− z(Ip(n + 1, λ)f(z))′

Ip(n + 1, λ)f(z)

=
(λ− p)zw′(z) + z2w′′(z)

w(z)
+ zw′(z)

w(z)
−

(
zw′(z)
w(z)

)2

(λ− p)w(z) + zw′(z)
w(z)

.

From the relation (3.3.2), we get

(λ− p)Ip(n + 3, λ)f(z)− λIp(n + 2, λ)f(z)

Ip(n + 2, λ)f(z)
−(λ− p)Ip(n + 2, λ)f(z)− λIp(n + 1, λ)f(z)

Ip(n + 1, λ)f(z)

=
(λ− p)zw′(z) + z2w′′(z)

w(z)
+ zw′(z)

w(z)
−

(
zw′(z)
w(z)

)2

(λ− p)w(z) + zw′(z)
w(z)

.

Then

(λ− p)Ip(n + 3, λ)f(z)

Ip(n + 2, λ)f(z)
− (λ− p)w(z)− zw′(z)

w(z)

=
(λ− p)zw′(z) + z2w′′(z)

w(z)
+ zw′(z)

w(z)
−

(
zw′(z)
w(z)

)2

(λ− p)w(z) + zw′(z)
w(z)

and hence

Ip(n + 3, λ)f(z)

Ip(n + 2, λ)f(z)

= w(z) +
1

λ− p

zw′(z)

w(z)
+

1

λ− p

[
(λ− p)zw′(z) + z2w′′(z)

w(z)
+ zw′(z)

w(z)
−

(
zw′(z)
w(z)

)2
]

(λ− p)w(z) + zw′(z)
w(z)

.
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If
∣∣∣ Ip(n+1,λ)f(z)

Ip(n,λ)f(z)

∣∣∣ < 1 is false, then there is exists z0 with |z0| = r0 < 1

such that

|w(z0)| = max
|z|≤|z0|

|w(z)| = 1.

Letting w(z0) = eiθ and using Lemma 3.1.5, we see that

Ip(n + 1, λ)f(z0)

Ip(n, λ)f(z0)
= eiθ,

Ip(n + 2, λ)f(z0)

Ip(n + 1, λ)f(z0)
= eiθ +

k

λ− p
,

and

Ip(n + 3, λ)f(z0)

Ip(n + 2, λ)f(z0)
= eiθ +

k

λ− p
+

k
[
eiθ + L+1−k

λ−p

]

(λ− p)eiθ + k
,

where L = z0w
′′(z0)/w

′(z0) and k ≥ 1. Further, an application of

Lemma 3.1.5, we obtain that

<
{

z0w
′′(z0)

w′(z0)

}
≥ k − 1,

or <L ≥ k − 1. Since g(r, s, t) ∈ G4, we have

∣∣∣∣g
(

Ip(n + 1, λ)f(z0)

Ip(n, λ)f(z0)
,
Ip(n + 2, λ)f(z0)

Ip(n + 1, λ)f(z0)
,
Ip(n + 3, λ)f(z0)

Ip(n + 2, λ)f(z0)

)∣∣∣∣

=

∣∣∣∣∣∣
g


eiθ, eiθ +

k

λ− p
, eiθ +

k

λ− p
+ +

k
[
eiθ + L+1−k

λ−p

]

(λ− p)eiθ + k




∣∣∣∣∣∣
≥ 1,

which contradicts the hypothesis of Theorem 3.3.2. Therefore we con-

clude that

|w(z)| =
∣∣∣∣
Ip(n + 1, λ)f(z)

Ip(n, λ)f(z)

∣∣∣∣ < 1,

for all z ∈ ∆. This completes the assertion of Theorem 3.3.5. ¤
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CHAPTER 4

SUMMARY

The present work is devoted to the study of certain subclasses of

univalent analytic functions defined in the unit disk ∆ = {z : |z| < 1}.

In Chapter 2, we extend S to the class consisting of p-valent analytic

functions

A(p,m) :=

{
f(z) : f(z) = zp +

∞∑
n=m

anz
n is analytic in ∆

}
,

p,m ∈ N = {1, 2, . . .} Note that S ⊂ A = A(1, 1).

We denote a subclass Tg[p,m, α] in A(p, m) with negative coeffi-

cients and obtain coefficient inequalities. Distortion and growth esti-

mates for functions in this class as well as inclusion and closure proper-

ties are also determined. A representation theorem is derived and the

Bernardi integral operator is studied.

Let Σp be the class of meromorphic functions of the form f(z) =

1
zp +

∑∞
k=1−p akz

k defined in the unit disk ∆. Functions in Σp are

analytic in the punctured unit disk ∆∗ = ∆ − {0}. In Chapter 3,

inequalities are obtained for meromorphic functions in Σp which are

associated with the Liu-Srivastava linear operator H l,m
p and the mul-

tiplier transform Ip(n, λ). In addition, we obtain sufficient conditions

for f ∈ Σp to satisfy a growth inequality.
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